The Sarcoglycan complex is expressed in the cerebrovascular system and is specifically regulated by astroglial Cx30 channels
نویسندگان
چکیده
Astrocytes, the most prominent glial cell type in the brain, send specialized processes called endfeet, around blood vessels and express a large molecular repertoire regulating the cerebrovascular system physiology. One of the most striking properties of astrocyte endfeet is their enrichment in gap junction proteins Connexin 43 and 30 (Cx43 and Cx30) allowing in particular for direct intercellular trafficking of ions and small signaling molecules through perivascular astroglial networks. In this study, we addressed the specific role of Cx30 at the gliovascular interface. Using an inactivation mouse model for Cx30 (Cx30(Δ/Δ); Δ means deleted allele) we showed that absence of Cx30 does not affect blood-brain barrier (BBB) organization and permeability. However, it results in the cerebrovascular fraction, in a strong upregulation of Sgcg encoding γ-Sarcoglycan (γ-SG), a member of the Dystrophin-associated protein complex (DAPC) connecting cytoskeleton and the extracellular matrix. The same molecular event occurs in Cx30(T5M/T5M) mutated mice, where Cx30 channels are closed, demonstrating that Sgcg regulation relied on Cx30 channel functions. We further characterized the expression of other Sarcoglycan complex (SGC) molecules in the cerebrovascular system and showed the presence of α-, β-, δ-, γ-, ε- and ζ- SG, as well as Sarcospan. Their expression was however not modified in Cx30(Δ/Δ). These results suggest that a full SGC might be present in the cerebrovascular system, and that expression of one of its member, γ-SG, depends on Cx30 channels. As described in skeletal muscles, the SGC may contribute to membrane stabilization and signal transduction in the cerebrovascular system, which may therefore be regulated by Cx30 channel-mediated functions.
منابع مشابه
Plasticity of astroglial networks in olfactory glomeruli.
Several recent findings have shown that neurons as well as astrocytes are organized into networks. Indeed, astrocytes are interconnected through connexin-formed gap junction channels allowing exchanges of ions and signaling molecules. The aim of this study is to characterize astrocyte network properties in mouse olfactory glomeruli where neuronal connectivity is highly ordered. Dye-coupling exp...
متن کامل(Measuring System Entropy Generation in a Complex Economic Network (The Case of Iran
An economic system is comprised of different primary flows that can be captured in macroeconomic models with complex network relations. Theoretically and empirically in this system, weak substitution or complementarity of environmental materials, like energy and other production factors such as capital, is undeniable. This is an effective critique on neoclassical economics. In this paper, we vi...
متن کاملHuman connexin26 and connexin30 form functional heteromeric and heterotypic channels.
Mutations in GJB2 and GJB6, the genes that encode the human gap junction proteins connexin26 (Cx26) and connexin30 (Cx30), respectively, cause hearing loss. Cx26 and Cx30 are both expressed in the cochlea, leading to the potential formation of heteromeric hemichannels and heterotypic gap junction channels. To investigate their interactions, we expressed human Cx26 and Cx30 individually or toget...
متن کاملP 44: The Role of HCN Channels in T Cell Function
Ion channels play a major role in the regulation of T cell function in health and disease. In a computer-based model, established to simulate T cells’ membrane potential (VM) generation, we discovered a discrepancy between the simulation and patch-clamp recordings. The predicted VM was more hyperpolarized than the measured VM, indicating that a yet unknown, depolarizing ion current might ...
متن کاملTwo distinct heterotypic channels mediate gap junction coupling between astrocyte and oligodendrocyte connexins.
Genetic diseases demonstrate that the normal function of CNS myelin depends on connexin32 (Cx32) and Cx47, gap junction (GJ) proteins expressed by oligodendrocytes. GJs couple oligodendrocytes and astrocytes (O/A channels) as well as astrocytes themselves (A/A channels). Because astrocytes express different connexins (Cx30 and Cx43), O/A channels must be heterotypic, whereas A/A channels may be...
متن کامل